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Abstract

Three multivariate discrhnination methods are applied as

computer based tuning algorithms during the manufacture

of over 9000 C-band power amplflers. The three
methods are parametric, nearest neighbor, and Monte

Carlo discrimination. The nearest neighbor and Monte

Carlo algorithms are found to be the most useful for

tuning microwave components. Monte Carlo

discrimination is judged to be the best method.

Application of the nearest neighbor and Monte Carlo

methods improved the rate of successfidly reclaiming

initially failing parts from 51% to 82% when compared

with manual tuning techniques.

I. Introduction

Production tuning of microwave components is often neces-

sary to meet performance specitlcations and increase yields.

Traditionally, tuning is done manually by experienced

technicians using a single pass or iterative process of measure-

ment and adjustment. Such approaches have several drawbacks

— time consuming, labor intensive, operator dependent results,

experience difficult to transfer. Computer based analyses are

preferable because they overcome these problems. In single

pass tuning situations, computer based methods provide a

higher rate of correct selections and require less evaluation

time. In both iterative and single pass situations, computer

based methods simultaneously assimilate many measured

component responses better than human operators.

Three single pass algorithms used during the manufacture

of a high power C band amplifier are presented. The algorithms

arise from a field of multivariate statistics known as
dscrirninant analysis. Discrirnirtant methods assign an

individual, part, or some other entity to one of several known

groups using measurements of the entity. The techniques are

particularly useful for tuning electronic parts because only

measurements from the parts are needed. No detailed simulation

model is required. Since measurements are often taken to verify

specification compliance, applying discriminant analysis to a
broad range of microwave tuning problems is both feasible and

quite straightforward.

II. Multivariate Discrimination

Three multivariate discriminant analyses were employed E

parametric discrimination [1,3], nearest neighbor discrimination

[2,3], and Monte Carlo discrimination. The parametric and
nearest neighbor techniques assign parts to one of several
known groups based on measurements taken on both the part

to be classified and previously classitled parts. The Monte

Csrlo method estimates the probability of a given action having

the desired outcome. Monte Carlo discrimination requires an

action to take place. The other two methods do not. This

distinction does not impact which data are need, but Monte

Carlo does alleviate the problem of initially establishing the

known groups.

Parametric dkcrirnination assumes an underlying joint

Gaussian distribution for each of the groups to which parts are

classified. Using measured data from previously classified parts,

the method then estimates the mean and covariance matrices for

the Gaussian distributions associated with each group. The

mean and covariance matrices are then used to determine the

relative proximity of parts under consideration to the group

means (or locations). The part is assigned to the closest group

after taking into consideration the variance exhibited by tlhe

measured data. The method’s strength is that only the est~ated

mean and covariance matrices need be retained; the raw data

can be discarded. The assumption that the underlying

distributions are Gaussian is the method’s greatest wealmess.-

Nearest neighbor discrimination makes no assumptions

about underlying distributions in the data. The method uses a

fast multidimensional sort and search method [41 to locate the

nearest neighbors for each part under consideration. The group

memberships of the nearest neighbors then indicate the

classification of the part in question. The diagram in Fig. 1

illustrates how nearest neighbor classification works for a 2-D

problem. The strength of the method is that it is nonparametdc

(i.e., no assumptions about underlying distributions). Its

weakness is that the raw data must be retained.

Monte Carlo discrimination, like the nearest neighbor

method, makes no assumptions about underlying dktributions

in the data and also overcomes an inherit problem with both

parametric and nearest neighbor discrimination. Both methods

implicitly hold the location of the speciilcation window (or
acceptability region) in the grouping of previous parts. If the

specifications change, then a bias towards the previous settings

exists. Monte Carlo discrimination uses the performance shifts
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Fig. 1: Classification using the nearest neighbor method

arising from the various tuning treatments to estimate which, if

any, of the treatments would be successful. The weakness of

the method is that the raw data must be retained.

Monte Carlo discrimination is an application of classical

multidimensional Monte Carlo integration [5,6]. The method

integrates the probability density functions (PDFs)

corresponding to a part’s measured data summed with

ensembles of tuning treatment performance shifts. These sums

are samples from the PDFs of interest and, as such, can be used

to do Monte Carlo integration over the specification window.

An estimate for the probability of a treatment tuning the part

into the specification window is simply a count of the points

within the window divided by the total number of ensemble

shifts applied. A graphical illustration of the concept is

presented in Fig. 2

III. Application

The need for a computer based tuning algorithm arose from

the assembly of over 9000 high power GSAS amplifiers. At the

outset of the program, the fiia.1 RF test yields were

unacceptably low. Scraping the failing parts was undesirable

because most of the manufacturing cost was already accrued.

The problem was initially addressed by manually assessing

which tuning stubs to autobond on the amplifier output tuning

board. A drawing of the amplifier is g!ven in Fig. 3.

Initially, experiments were conducted to correlate failing

data patterns with successful tuning treatments. This activity

required perusal of 70 element data matrices taken from failing

parts. The matrices consist of 10 petiormance parameters

measured at 7 C-band frequencies (see Table 1).

After the period of identify&g effective tuning treatments,

production technicians interpreted the data matrices on

production parts and took the appropriate actions. Using this

manual tuning method approximately 5170 of the parts selected

for tuning subsequently passed (i.e., 51% of the initially failing

parts were correctly reclassified as good).
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Fig. 2: Visualization of Monte Carlo discrimination
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Fig 3: Schematic drawing of C-band high power

amplifier showing input and output networks in detail

At this point, the parametric discrimination algorithm was

introduced. The initial results were less than expected. The

primary reason for these problems was that the underlying data

distributions are not Gaussian. Inspection of data histograms

indicated that many variables have skewed or multimodal

distributions. Another problem is that very large numbers of

data points are required to properly estimate the covariance

matrices for high dimensional spaces.
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Table 1: Performance parameters used by discriminators

The parametric discrimination algorithm was replaced with

the nearest neighbor method, which ultimately rendered the

bulwark of production tuning decisions. The algorithm provided

productivity gains in several areas. First, technicians no longer

had to interpret test repotts, as a classification report was

instead forwarded to autobonder operators. Also, the rate of

correctly reclassifying parts as good (recoverable) increased

from 51’% to 82%. The rate of correctly classifying parts as bad

(unrecoverable) however declined to an estimated 92% from

some unknown but higher value.

The Monte Carlo method was applied to remedy the

specification bias inherent in the nearest neighbor method and

to finish out production. The method was initially used to

revaluate a large number of previously failed parts relative to

new specitlcations. Since the number of parts evahtated during

production with the Monte Carlo method was small, no

reliable production build data is available for success rates.

However, during the reevaluation work, 79% of the retested

parts passed the new spectilcations. The success rate for the

algorithm may well be higher because of the nonzero

probability that some failures resulted from additional handling.

(The data used for the reevaluation was taken before the parts

were stored.)

All of the algorithms used four classification groups — 3

bond treatments and unrecoverable. The bond pattern associated

with each treatment are summarized in Table 2. Note that

treatment #1 is the configuration under which the part is

initially measured. Treatments 2 through 4 correspond to the

recovery treatments.

\l Treattnent / Description II

II 1 \ No stubs activated with bonds II

II 2 I On both amps both bend stubs bonded II

3 Output stubs on both amps

4 Both bend & output stubs on both amps

Table 2: Summary of bond treatment bonding patterns

The bond configuration most often chosen was treatment 3.

. Bond treatment 3 was most effective against output power and

phase pushing failures at the high end of the band, f, (f, and f,’
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are out of band and are not speciiled).’ Treatment 3 is also

useful on phase droop and correction factor failures. In Fig. 4

marginal density scatterplots, albeit only 2-D, of the before and

after performances resulting from application of bond treatment

3 is presented. Note that the density scatter plot does not show

other bond treatment marginal data densities. To date, rendering

density plots with clear separation in only two dnensions has

proved elusive. Nonetheless, studying probabilities of success

as computed by the Monte Carlo algorithm indicate separation.

Other tests based on Gaussian statistics could be applied, but

they are of dubious vahte given the data is known to be nom

Gaussian.

10

6

~1 2

z

# .2

a
u)
%

n
& -6

-lo

-14

Before Tuning O
After Tuning +

Spec bourtdary —
0%0 ~

I I I I I I

I I 1 I I o

-1.5 -1 -0.5 0 0.5 1 1.5 2
Pout pusittg at f_5

Fig. 4: Marginal density scatterplots showing transition

across the specification boundary

Art experiment~ study was undertaken to detenrtine how’

each of the tuning treatments alters the electrical characteristics

of the output tuning board. At this point, analysis of the data is

qualitative. Further study requires deembedding of probe pad

structures that were added on the ampliiler side of the output

board. Also, the leg attached to the output of Amp 2 k
terminated in 50L2 to permit a two port measurement.

Measurements were also done the Amp 1 leg terminated. The

results are similar for both termination schemes.

SI, over the fiist through fourth harmonic bands is presented

in Fig. 5. Examination of the data indicates that the tuning

treatments have only a small effect over the fundamental

frequency band. The major differences appem in the second

through fourth harmonic bands. This situation indicates that
considerable attention must be paid during the design phase m

terminating the higher harmonic components.



IV. Conclusion
Bond 1

When program requirements and cost/’benefit analyses

mandate production tuning, computer based tuning algorithms

can offer substantial productivity gains compared to manual

tuning. The author applied three different tuning algorithms

during the production of over 9000 GaAs high power

amplifiers. Nearest neighbor and Monte Carlo discrimination

proved adequate for production tuning. The Monte Carlo

method is judged superior because it is nonparametric and

handles specification changes gracefully.

Data is presented to show the bond treatments effect the

electrical behavior of the output tuning network. The data

indicates that differences in the network at higher harmonics

account for improvements in the overall assembly’s

performance relative droop and pushing specifications.
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Fig. 5’: S-parameter data for output network configured

in each of the four tuning treatments. (a) gives first and

second harmonic band data, (b) and (c) present the third

and fourth harmonic data, respectively.
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