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Abstract

Three multivariate discrimination methods are applied as
computer based tuning algorithms during the manufacture
of over 9000 C-band power amplifiers. The three
methods are parametric, nearest neighbor, and Monte
Carlo discrimination. The nearest neighbor and Monte
Carlo algorithms are found to be the most useful for
tuning microwave components. Monte Carlo
discrimination is judged to be the best method.
Application of the nearest neighbor and Monte Carlo
methods improved the rate of successfully reclaiming
initially failing parts from 51% to 82% when compared
with manual tuning techniques.

I. Introduction

Production tuning of microwave components is often neces-
sary to meet performance specifications and increase yields.
Traditionally, tuning is done manually by experienced
technicians using a single pass or iterative process of measure-
ment and adjustment. Such approaches have several drawbacks
— time consuming, labor intensive, operator dependent results,
experience difficult to transfer. Computer based analyses are
preferable because they overcome these problems. In single
pass tuning situations, computer based methods provide a
higher rate of correct selections and require less evaluation
time. In both iterative and single pass situations, computer
based methods simultaneously assimilate many measured
component responses better than human operators.

Three single pass algorithms used during the manufacture
of a high power C band amplifier are presented. The algorithms
arise from a field of multivariate statistics known as
disctiminant analysis. Discriminant methods assign an
individual, part, or some other entity to one of several known
groups using measurements of the entity. The techniques are
particularly useful for tuning electronic parts because only
measurements from the parts are needed. No detailed simulation
model is required. Since measurements are often taken to verify
specification compliance, applying discriminant analysis to a
broad range of microwave tuning problems is both feasible and
quite straightforward.
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II. Multivariate Discrimination

Three multivariate discriminant analyses were employed
parametric discrimination [1,3], nearest neighbor discrimination
[2,3], and Monte Carlo discrimination. The parametric and
nearest neighbor techniques assign parts to one of several
known groups based on measurements taken on both the part
to be classified and previously classified parts. The Monte
Carlo method estimates the probability of a given action having
the desired outcome. Monte Carlo discrimination requires an
action to take place. The other two methods do not. This
distinction does not impact which data are need, but Monte
Carlo does alleviate the problem of initially establishing the
known groups.

Parametric discrimination assumes an underlying joint
Gaussian distribution for each of the groups to which parts are
classified. Using measured data from previously classified parts,
the method then estimates the mean and covariance matrices for
the Gaussian distributions associated with each group. The
mean and covariance matrices are then used to determine the
relative proximity of parts under consideration to the group
means (or locations). The part is assigned to the closest group
after taking into consideration the variance exhibited by the
measured data. The method’s strength is that only the estimated
mean and covariance matrices need be retained; the raw data
can be discarded. The assumption that the underlying
distributions are Gaussian is the method’s greatest weakness.

Nearest neighbor discrimination makes no assumptions
about underlying distributions in the data. The method uses a
fast multidimensional sort and search method [4] to locate the
nearest neighbors for each part under consideration. The group
memberships of the nearest neighbors then indicate the
classification of the part in question. The diagram in Fig. 1
illustrates how nearest neighbor classification works for a 2-D
problem. The strength of the method is that it is nonparametric
(ie., no assumptions about underdying distributions). Its
weakness is that the raw data must be retained.

Monte Carlo discrimination, like the nearest neighbor
method, makes no assumptions about underlying distributions
in the data and also overcomes an inherit problem with both
parametric and nearest neighbor discrimination. Both methods
implicitly hold the location of the specification window (or
acceptability region) in the grouping of previous parts. If the
specifications change, then a bias towards the previous settings
exists. Monte Carlo discrimination uses the performance shifts
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Fig. 1: Classification using the nearest neighbor method

arising from the various tuning treatments to estimate which, if
any, of the treatments would be successful. The weakness of
the method is that the raw data must be retained.

Monte Carlo discrimination is an application of classical
multidimensional Monte Carlo integration [5,6]. The method
integrates the probability density functions (PDFs)
corresponding to a part’s measured data summed with
ensembles of tuning treatment performance shifts. These sums
are samples from the PDFs of interest and, as such, can be used
to do Monte Carlo integration over the specification window.
An estimate for the probability of a treatment tuning the part
into the specification window is simply a count of the points
within the window divided by the total number of ensemble
shifts applied. A graphical illustration of the concept is
presented in Fig. 2

III. Application

The need for a computer based tuning algorithm arose from
the assembly of over 9000 high power GaAs amplifiers. At the
outset of the program, the final RF test yields were
unacceptably low. Scraping the failing parts was undesirable
because most of the manufacturing cost was already accrued.
The problem was initially addressed by manually assessing
which tuning stubs to autobond on the amplifier output tuning
board. A drawing of the amplifier is given in Fig. 3.

Initially, experiments were conducted to correlate failing
data patterns with successful tuning treatments. This activity
required perusal of 70 element data rhatrices taken from failing
parts. The matrices consist of 10 performance parameters
measured at 7 C-band frequencies (see Table 1).

After the period of identifying effective tuning treatments,
production technicians interpreted the data matrices on
production parts and took the appropriate actions. Using this
manual tuning method approximately 51% of the parts selected
for tuning subsequently passed (i.e., 51% of the initially failing
parts were correctly reclassified as good).

128

Point for
classification

L and acceptance
region.

x4
XZ |
f / Treatment 1
X [ shift Ensemble
Treatment 2
W | Shift Ensemble
Xy
x
2
st
Wuld Resulting
outcome
distributions
use
treatment 2
_—_>

X4

Fig. 2: Visualization of Monte Carlo discrimination
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Fig 3: Schematic drawing of C-band high power
amplifier showing input and output networks in detail

At this point, the parametric discrimination algorithm was
introduced. The initial results were less than expected. The
primary reason for these problems was that the underlying data
distributions are not Gaussian. Inspection of data histograms
indicated that many variables have skewed or multimodal
distributions. Another problem is that very large numbers of
data points are required to properly estimate the covariance
matrices for high dimensional spaces.
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Table 1: Performance parameters used by discriminators

The parametric discrimination algorithm was replaced with
the nearest neighbor method, which ultimately rendered the
bulwark of production tuning decisions. The algorithm provided
productivity gains in several areas. First, technicians no longer
had to interpret test reports, as a classification report was
instead forwarded to autobonder operators. Also, the rate of
correctly reclassifying parts as good (recoverable) increased
from 51% to 82%. The rate of correctly classifying parts as bad
(unrecoverable) however declined to an estimated 92% from
some unknown but higher value.

The Monte Carlo method was applied to remedy the
specification bias inherent in the nearest neighbor method and
to finish out production. The method was initially used to
revaluate a large number of previously failed parts relative to
new specifications. Since the number of parts evaluated during
production with the Monte Carlo method was small, no
reliable production build data is available for success rates.
However, during the reevaluation work, 79% of the retested
parts passed the new specifications. The success rate for the
algorithm may well be higher because of the nonzero
probability that some failures resulted from additional handling.
(The data used for the reevaluation was taken before the parts
were stored.)

All of the algorithms used four classification groups — 3
bond treatments and unrecoverable. The bond pattern associated
with each treatment are summarized in Table 2. Note that
treatment #1 is the configuration under which the part is
initially measured. Treatments 2 through 4 correspond to the
recovery treatments.

Treatment Description
1 No stubs activated with bonds
2 On both amps both bend stubs bonded
3 Output stubs on both amps
4 Both bend & output stubs on both amps

Table 2: Summary of bond treatment bonding patterns

The bond configuration most often chosen was treatment 3.
. Bond treatment 3 was most effective against output power and
phase pushing failures at the high end of the band, f; (f; and £;’
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are out of band and are not specified). Treatment 3 is also
useful on phase droop and correction factor failures. In Fig. 4
marginal density scatterplots, albeit only 2-D, of the before and
after performances resulting from application of bond treatment
3 is presented. Note that the density scatter plot does not show
other bond treatment marginal data densities. To date, rendering
density plots with clear separation in only two dimensions has
proved elusive. Nonetheless, studying probabilities of success

-as computed by the Monte Carlo algorithm indicate separation.

Other tests based on Gaussian statistics could be applied, but
they are of dubious value given the data is known to be non-
Gaussian.
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Fig. 4: Marginal density scatterplots showing transition
across the specification boundary

An'experimentanl study was undertaken to determine how’
each of the tuning treatments alters the electrical characteristics
of the output tuning board. At this point, analysis of the data is
qualitative. Further study requires deembedding of probe pad
structures that were added on the amplifier side of the output
board. Also, the leg attached to the output of Amp 2 is
terminated in 500 to permit a two port measurement.
Measurements were also done the Amp 1 leg terminated. The
results are similar for both termination schemes.

S, over the first through fourth harmonic bands is presented
in Fig. 5. Examination of the data indicates that the tuning
treatments have only a small effect over the fundamental
frequency band. The major differences appear in the second
through fourth harmonic bands. This situation indicates that
considerable attention must be paid during the design phase to
terminating the higher harmonic components.



IV. Conclusion

When program requirements and cost/benefit analyses
mandate production tuning, computer based tuning algorithms
can offer substantial productivity gains compared to manual
tuning. The author applied three different tuning algorithms
during the production of over 9000 GaAs high power
amplifiers. Nearest neighbor and Monte Carlo discrimination
proved adequate for production tuning. The Monte Carlo
method is judged superior because it is nonparametric and
handles specification changes gracefully.

Data is presented to show the bond treatments effect the
electrical behavior of the output tuning network. The data
indicates that differences in the network at higher harmonics
account for improvements in the overall assembly’s
performance relative droop and pushing specifications.
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Fig. 5: S-parameter data for output network configured
in each of the four tuning treatments. (a) gives first and
second harmonic band data, (b) and (c¢) present the third
and fourth harmonic data, respectively.



